gym_os2r.tasks¶
gym_os2r.tasks.monopod¶
- class gym_os2r.tasks.monopod.MonopodTask(agent_rate, **kwargs)¶
- Bases: - gym_ignition.base.task.Task,- abc.ABC- Monopod task defines the main task functionality for the monopod environment. Task must be wrapped in a runtime or randomizer class to use with igntion or the real robot. - Required *kwargs
- Task requires the kwargs; ‘task_mode’, ‘reward_class’, ‘reset_positions’. - Type
- dict 
 
 - task_mode¶
- The defined monopod task. current default tasks, ‘free_hip’, ‘fixed_hip’, ‘fixed’, ‘old-free_hip’, ‘old-fixed_hip’, ‘old-fixed’. - Type
- str 
 
 - reward_class¶
- Class defining the reward. Must have same functions as RewardBase. 
 - reset_positions¶
- Reset locations of the task. currently supports, ‘stand’, ‘half_stand’, ‘ground’, ‘lay’, ‘float’. - Type
- [str] 
 
 - observation_index¶
- dictionry with the joint_name_pos and joint_name_vel as keys with values corresponding to its index in the observation space. - Type
- dict 
 
 - calculate_reward(obs, action)¶
- Calculates the reward given observation and action. The reward is calculated in a provided reward class defined in the tasks kwargs. - Parameters
- obs (np.array) – numpy array with the same size task dimensions as observation space. 
- Deque[np.array] (actions) – Deque of actions taken by the environment numpy array with the same size task dimensions as action space. 
 
- Returns
- True for done, False otherwise. 
- Return type
- (bool) 
 
 - create_spaces()¶
- Constructs observtion and action spaces for monopod task. Spaces definition is defined in ../config/default/settings.yaml … - Returns
- action space. (ndarray): observation space. 
- Return type
- (ndarray) 
 
 - get_info()¶
- Return the info dictionary. :rtype: - Dict:returns: A- dictwith extra information of the task.
 - get_observation()¶
- Returns the current observation state of the monopod. - Returns
- Array of joint positions and velocities. 
- Return type
- (ndarray) 
 
 - get_reward()¶
- Returns the reward for the current monopod state. - Returns
- True for done, False otherwise. 
- Return type
- (bool) 
 
 - get_state_info(obs, actions)¶
- Returns the reward and is_done for some observation and action space. - Parameters
- obs (np.array) – numpy array with the same size task dimensions as observation space. 
- Deque[np.array] (actions) – Deque of actions taken by the environment numpy array with the same size task dimensions as action space. 
 
- Returns
- Rewrd given the state. (bool): True for done, False otherwise. 
- Return type
- (Reward) 
 
 - is_done()¶
- Checks if the current state of the robot is outside of the reset_space. logs the reason for the reset as a debug message. - Returns
- True for done, False otherwise. 
- Return type
- (bool) 
 
 - reset_task()¶
- Resets the environment into default state. sets the scenario backend into force controller mode Sets the max generalized force for eachcontrolled joint. - Return type
- None
 
 - set_action(action, store_action=True)¶
- Set generalized force target for each controlled joint. - Parameters
- action (ndrray) – Generalized force target for each controlled joint. 
- store_action (bool) – True to store action taken in action history otherwise false to ignore. 
 
- Returns
- True if success otherwise false. 
- Return type
- (bool) 
- Raises
- (RuntimeError) – Failed to set joints torque target. 
 
 
gym_os2r.tasks.monopod_no_norm¶
- class gym_os2r.tasks.monopod_no_norm.MonopodTask(agent_rate, **kwargs)¶
- Bases: - gym_ignition.base.task.Task,- abc.ABC- Monopod task defines the main task functionality for the monopod environment. Task must be wrapped in a runtime or randomizer class to use with igntion or the real robot. - Required *kwargs
- Task requires the kwargs; ‘task_mode’, ‘reward_class’, ‘reset_positions’. - Type
- dict 
 
 - task_mode¶
- The defined monopod task. current default tasks, ‘free_hip’, ‘fixed_hip’, ‘fixed’, ‘old-free_hip’, ‘old-fixed_hip’, ‘old-fixed’. - Type
- str 
 
 - reward_class¶
- Class defining the reward. Must have same functions as RewardBase. 
 - reset_positions¶
- Reset locations of the task. currently supports, ‘stand’, ‘half_stand’, ‘ground’, ‘lay’, ‘float’. - Type
- [str] 
 
 - observation_index¶
- dictionry with the joint_name_pos and joint_name_vel as keys with values corresponding to its index in the observation space. - Type
- dict 
 
 - calculate_reward(obs, action)¶
- Calculates the reward given observation and action. The reward is calculated in a provided reward class defined in the tasks kwargs. - Parameters
- obs (np.array) – numpy array with the same size task dimensions as observation space. 
- Deque[np.array] (actions) – Deque of actions taken by the environment numpy array with the same size task dimensions as action space. 
 
- Returns
- True for done, False otherwise. 
- Return type
- (bool) 
 
 - create_spaces()¶
- Constructs observtion and action spaces for monopod task. Spaces definition is defined in ../config/default/settings.yaml … - Returns
- action space. (ndarray): observation space. 
- Return type
- (ndarray) 
 
 - get_info()¶
- Return the info dictionary. :rtype: - Dict:returns: A- dictwith extra information of the task.
 - get_observation()¶
- Returns the current observation state of the monopod. - Returns
- Array of joint positions and velocities. 
- Return type
- (ndarray) 
 
 - get_reward()¶
- Returns the reward for the current monopod state. - Returns
- True for done, False otherwise. 
- Return type
- (bool) 
 
 - get_state_info(obs, actions)¶
- Returns the reward and is_done for some observation and action space. - Parameters
- obs (np.array) – numpy array with the same size task dimensions as observation space. 
- Deque[np.array] (actions) – Deque of actions taken by the environment numpy array with the same size task dimensions as action space. 
 
- Returns
- Rewrd given the state. (bool): True for done, False otherwise. 
- Return type
- (Reward) 
 
 - is_done()¶
- Checks if the current state of the robot is outside of the reset_space. logs the reason for the reset as a debug message. - Returns
- True for done, False otherwise. 
- Return type
- (bool) 
 
 - reset_task()¶
- Resets the environment into default state. sets the scenario backend into force controller mode Sets the max generalized force for eachcontrolled joint. - Return type
- None
 
 - set_action(action, store_action=True)¶
- Set generalized force target for each controlled joint. - Parameters
- action (ndrray) – Generalized force target for each controlled joint. 
- store_action (bool) – True to store action taken in action history otherwise false to ignore. 
 
- Returns
- True if success otherwise false. 
- Return type
- (bool) 
- Raises
- (RuntimeError) – Failed to set joints torque target.